How one region is teaming up to promote renewable energy

Scotland, Ireland and Northern Ireland are committing to a clean energy future together. Sara Chodosh writes a very good article on New York University’s Scienceline website. Not only is it good news about the efforts of these European partners to promote renewable energy. It is also encouraging to have Americans trying to learn lessons from it. This is quite encouraging.


A new paradigm for renewable energy

Scotland, with its long shorelines and brisk coastal winds, is a well of potential tidal and wind energy. Now it is teaming up with its island neighbors, Ireland and Northern Ireland, to build one of the world’s first large-scale marine renewable energy systems.

The Irish Scottish Links on Energy Study project is set to produce 6.2 gigawatts of power annually by 2020 — that’s enough to power about 1.8 million homes. It will be part of the European Union’s goal of using 27 percent renewable energy by 2030. The project, known as ISLES, will use all three of the major marine renewable energy sources — offshore wind, wave and tidal — and will provide much-needed data on the technology and its effects on the environment.

“The main advantage of marine renewable energy is that the input is much more constant,” says Sarah Henkel, a researcher at the Hatfield Marine Science Center at Oregon State University. The amount of energy produced by onshore wind turbines and solar power varies with the weather and time of day, so the consistency of marine renewables makes them valuable both to utility companies and consumers. “Efficiency is also an advantage,” Henkel says. Water is denser than air, so less motion produces the same amount of force as it would on land.

But the potential environmental effects may hinder widespread implementation of marine renewables. All three marine energy production devices make noise, which can be problematic for ocean life. Not only do many sea creatures communicate via sound waves, loud sound waves can actually injure marine animals. We still don’t have enough research to know the effects this sound will have, says Henkel, and it’s hard to design a device that prevents problems that haven’t been identified yet. But she says there is sufficient data on underwater sound waves to address issues if and when they arise.

There is far less data about other environmental issues. Artificial reefs, which form around new objects in the ocean — like wind turbines or wave energy devices — “could attract invasive species or drag fish away from their natural habitats,” says Brian Polagye, co-director of the Northwest National Marine Renewable Energy Center at the University of Washington. Providing more habitat for fish isn’t necessarily a bad thing, but if the artificial reefs cause too much change in the ecosystem they could be ultimately harmful. That’s why some of his research investigates how to design a foundation that encourages certain types of marine life to take hold. If scientists can control the local artificial reef environment, they might be able to promote marine life, but they might also unintentionally harm it. Without large-scale research, it’s difficult to know what effects the reefs will have and how much scientists will be able to control those outcomes.

Studies that would actually investigate these issues are slow to progress, however. Polagye says he can sometimes work directly with companies that produce prototypes of renewable technology or get funded through federal agencies to do testing, but there just aren’t very many prototypes being deployed in the United States.

Scotland, on the other hand, has been testing prototypes at its European Marine Energy Centre for the past 10 years. “Europe takes the approach of putting them in the ocean and seeing what happens,” says Henkel, whereas American scientists try to assess every possible outcome before deploying anything.

Europe also has geographical advantages. Offshore wind and tidal arrays are already a reality there because Europe has relatively shallow waters, says Polagye. That makes marine renewables easier to implement because building structures — especially offshore wind turbines — in deep water is expensive and challenging.

Technology to solve these problems can be repurposed across all marine renewables, but it’s still expensive to develop these solutions in the first place. Much of the technology in the U.S. has actually come from the needs of oil companies, Polagye says, who want to drill increasingly in deeper waters. But despite advances, he says the cost of energy from wave and tidal energy producers is still an order of magnitude higher than current prices.

High energy prices in Europe drive the desire for cheap renewable energy, says Henkel. Investments in marine renewables here in the U.S. dropped off when oil prices fell in 2014. Without investments, Henkel says we need national test facilities so that research isn’t reliant on individual companies pushing prototypes one by one.

The U.S. Department of Energy has already invested $300 million in offshore wind developments and sponsors the Wave Energy Prize to help make wave energy devices more affordable. But Polagye says renewable energy advances come with popular support. “The idea of marine energy is wrapped up in the idea of Scottish identity,” he says, “it’s a national issue in a way that it probably never will be in the U.S.”

American scientists should be trying to involve the public in the quest for marine renewables, says Polagye, but we as a country need to push forward in the meantime. Perhaps the U.S. should follow the ISLES project’s lead, says Henkel. “We’re at a tipping point now where we really just have to get something in the water.”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.